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Abstract

This paper exploits the properties of the commute time for the purposes of graph simpli-
fication and matching. Our starting point is the lazy random walk on the graph, which is
determined by the heat-kernel of the graph and can be computed from the spectrum of
the graph Laplacian. We characterise the random walk using the commute time between
nodes, and show how this quantity may be computed from the Laplacian spectrum using
the discrete Green’s function. In this paper, we explore twodifferent, but essentially dual,
simplified graph representations delivered by the commute time. The first representation
decomposes graphs into concentric layers. To do this we augment the graph with an auxil-
iary node which acts as a heat source. We use the pattern of commute times from this node
to decompose the graph into a sequence of layers. Our second representation is based on
the the minimum spanning tree of the commute time matrix. Thespanning trees located
using commute time prove to be stable to structural variations. We match the graphs by
applying a tree-matching method to the spanning trees. We experiment with the method on
synthetic and real-world image data, where it proves to be effective.
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1 Introduction

Spectral graph theory [2] is concerned with characterisingthe structural properties
of graphs using information conveyed by the eigenvalues andeigenvectors of the
Laplacian matrix (the degree matrix minus the adjacency matrix). One of the most
important tasks that arises in the analysis of graphs is thatof enumerating the set of
paths (and their lengths) between pairs of nodes. This process can be characterised
using the heat equation [5]. The heat kernel [5] is the solution of the heat-equation
on the graph and is found by exponentiating the normalised Laplacian of the graph
(the identity matrix minus the degree normalised adjacencymatrix) with time. As a
result, the heat kernel can be computed efficiently by exponentiating the Laplacian
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eigensystem [2]. The heat kernel can be viewed as capturing the way in which
information flows with time across the edges of the graph. Forlarge times the heat
kernel is dominated by the Fiedler vector, and so it is equivalent to the random
walk.

Random walks [17] have found widespread use in information retrieval and struc-
tural pattern analysis. For instance, the random walk is thebasis of the Page-Rank
algorithm which is used by the Googlebot search engine [1]. In computer vision
random walks have been used for image segmentation [8] and clustering [15]. More
recently both Gori, Maggini and Sarti [4], and, Robles-Kelly and Hancock [14,13]
have used random walks to sort the nodes of graphs for the purposes of graph-
matching. Most of these methods use a simple approximate characterisation of the
random walk based either on the leading eigenvector of the transition probabil-
ity matrix, or equivalently the Fiedler vector of the Laplacian matrix [6]. In gen-
eral though, the random walk is not edge-connected on the graph. Hence, it may
not preserve the edge structure and can prove to be an ineffective way of captur-
ing the structural properties of the graph. In an attempt to overcome this problem
Robles-Kelly and Hancock explore two approaches. The first of these is to use a
post-processing step to recover an edge connected path fromthe components of the
leading eigenvector [14]. The second refinement is to pose the recovery of an edge-
ordered path as one of graph seriation using a utility function and to recover an
approximate solution to this problem using graph-spectral(i.e. eigenvector) meth-
ods [13].

This work on path based methods for graph matching is clearlyclosely akin with
graph spectral techniques, since both rely on the eigenvalues and eigenvectors of
the Laplacian matrix. There has been a considerable body of work aimed at us-
ing graph-spectra for the purposes of matching. Some of the first work was done
by Umeyama [19] who showed how graphs with the same number of nodes, but
different edge structure. The method computes an approximate node permutation
matrix by taking the outer-product of the singular vectors of the adjacency matrices
for the graphs being matched. Luo and Hancock [7] have shown how the method
can be rendered robust to differences in the numbers of nodesusing the apparatus
of the EM algorithm. Eigenvalues and eigenvectors of the adjacency matrix or the
Laplacian matrix have also been used to cluster [20] and index graphs [16]. An
alternative to using graph-spectra as features for the purposes of graph matching is
to use eigenvector methods to extract a simplified structurefrom a graph which is
more easily matched than the original graph. Although inexact graph-matching is
a problem of potentially exponential complexity, the problem can be simplified by
decomposing the graphs to be matched into smaller subgraphsor structures.

However, a single eigenvector can not be used to determine more detailed infor-
mation concerning the random walk. The aim in this paper is tocharacterise the
properties of the random walk in a finer way using the commute times. Thehitting
timeQ(u; v) of a random walk on a graph is defined as the expected number of steps

2



before nodev is visited, commencing from nodeu. Thecommute timeCT (u; v),
on the other hand, is the expected time for the random walk to travel from nodeu
to reach nodev and then return. Both the hitting time and the commute time can
be computed from the discrete Green’s function or pseudo-inverse of the Laplacian
matrix. The idea that is central to this paper is to use the commute time to extract
a simplified ordered structure from the graph, and to use the structures for the pur-
poses of graph matching. Here we present two rather different, but essentially dual,
simplification methods.

The first graph simplification method is based on the concentric layers that result
from repeatedly peeling away the boundary of the graph. Our motivation in adopt-
ing this representation is that the pattern of concentric layers is less likely to be
disturbed by structural noise than the random walk, which can be diverted. To ad-
dress this problem using the apparatus of the heat equation,we augment the graph
with an auxiliary node. This node is connected to each of the boundary nodes by
an edge, and acts as a heat source. Concentric layers are characterised using the
commute time from the auxiliary node. We match graphs by separately matching
the concentric layers.

The second graph simplification method uses the minimum spanning tree associ-
ated with the heat kernel as a way of characterising the graph. However, there is a
difficulty with directly using the heat kernel, since the time parameter of the kernel
must be set. As we will show later in the paper, the spanning trees evolve in a rather
interesting way with time. For small time, they are rooted near the centre of the
graph, and the branches connect to terminal nodes that are onthe boundary of the
graph. As time increases, the tree becomes string like, and winds itself from the
centre of the graph to the perimeter. As it does so, the numberof terminal nodes
decreases, i.e. the large time tree has the appearance of a string to which a small
number of short branches or ligatures are attached. Hence, achoice must be made
in setting the time parameter.

One way to overcome this problem is to use statistical properties of the random
walk. Hence, in this paper we use the minimum spanning tree associated with the
minimum commute time as a way of characterising the structure of a graph. We
construct an auxiliary fully connected graph in which the weights are the commute
times between pairs of nodes in the original graph. We then use Prim’s method to
locate the spanning tree that minimises the sum of weights. The spanning tree is
rooted at the node of minimum weight in the auxiliary graph, and this is located
near the centre of the original graph.

The commute time has properties that suggest that it can leaditself to the iden-
tification of stable spanning trees. A pair of nodes in the graph will have a small
commute time value if one of three conditions is satisfied. The first of these is that
they are close together, i.e. the length of the path between them is small. The second
case is if the sum of the weights on the edges connecting the nodes is small. Finally,
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the commute time is small if the pair of nodes are connected bymany paths.

The outline of this paper is as follows. In Section 2 we reviewthe properties of
the commute time and its relationship with the Laplacian eigensystem. Section 3
describes how the multi-layer representations can be extracted from graphs using
commute time, and outlines how the representation can be matched. In Section 4
we turn our attention to the tree-based representation and its matching. Section 5
presents experiments with both representations and compares their performance.
Finally, Section 6 presents conclusions and outlines directions for future investiga-
tion.

2 Heat Kernel, Lazy Random Walks, Green’s Function and Commute Time

In this section, we review the theory underpinning the computation of the commute
time. We commence by introducing the heat-kernel of a graph,next we show how
the heat kernel is related to the lazy random walk on a graph, and then we show
how the discrete Green’s function can be computed from the Laplacian spectrum.
Finally, we show that the commute time is a metric that is obtained from the Green’s
function.

2.1 Heat kernel

Consider the the weighted graph� = (V;E;W ) whereV is the set of nodes,E � V � V is the set of edges andW is thejV j � jV j edge weight matrix. Further
let T = diag(dv; v 2 V ) be the diagonal weighted degree matrix with elementsTu;u = Pnv=1W (u; v) andA be the adjacency matrix. The un-normalized weighted
Laplacian matrix is given byL = T �W and the normalized weighted Laplacian
matrix is defined to beL = T�1=2LT�1=2 , and has elementsL�(u; v) = 8>>>>><>>>>>: 1 if u = v�W (u;v)pdudv if u 6= v and(u; v) 2 E0 otherwise

The spectral decomposition of the normalized Laplacian isL = ���T . Here� =diag(�1; �2; :::; �jV j) is the diagonal matrix with the ordered eigenvalues0 = �1 ��2 : : : � �jV j as elements. The eigenvector matrix� = (�1j�2j::::j�jV j) has the
correspondingly ordered eigenvectors as columns.

In the paper we are interested in the heat equation associated with the graph Lapla-
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cian. The heat kernelHt satisfies the partial differential equation�Ht�t = �LHt
wheret is time. The solution of the heat-equation is found by exponentiating the
Laplacian eigenspectrum i.e.Ht = exp[�tL℄ = � exp[�t�℄�T
The heat kernel is ajV j � jV j matrix, and for the nodesu andv of the graph� the
element of the matrix isHt(u; v) = jV jXi=1 exp[��it℄�i(u)�i(v)
2.2 Lazy random walk

Let us consider the normalised adjacency matrix matrixP = I�L = T 1=2PT�1=2,
whereI is the identity matrix. We can re-express the heat kernel by performing the
McLaurin expansion, Ht = e�t(I�P) = e�t 1Xr=1Pr trr!
Using the spectral decomposition of the normalized Laplacian, we havePr = (I�L)r = �(I � �)r�T and as a resultPr(u; v) = jV jXi=1(1� �i)r�i(u)�i(v) =X�r Yi W (ui; ui+1)qduidui+1
The normalized probability matrixPr(u; v) is hence the sum of the probabilities of
all the random walks� of lengthr connecting nodeu andv. As a result the heat
kernel is the continuous time limit of the lazy random walk. To show this, consider
a lazy random walk with transition matrixR = (1� �)I + WT �
The random walk migrates between different nodes with probability � and remains
static at a node with probability1��. Let� = �0�t where�t = 1N . Consider the
limit �t! 0 limN!1RN = limN!1�I + (WT � I)�0 1N �N = e(WT �I)�0 (1)
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while WT � I = T�1A� I = T�1(T � L)� I = �T�1L (2)

Now consider the discrete Laplace operator� with the propertyL = T 1=2�T�1=2 = T�1=2LT�1=2
which implies� = LT�1. As a result, we getlimN!1RN = e���0 , which is just
the expression for the heat kernel.

2.3 Green’s function

Now consider the discrete Laplace operator� = T�1=2LT 1=2. The Green’s func-
tion is the left inverse operator of the Laplace operator�, defined byG�(u; v) = I(u; v)� dvvol
wherevol = Pv2V (�) dv is the volume of the graph. A physical interpretation of the
Green’s function is the temperature at a node in the graph dueto a unit heat source
applied to the external node. It is related with the heat kernel Ht in the following
manner G(u; v) = Z 10 d1=2u (Ht(u; v)� �1(u)�1(v)) d�1=2v dt (3)

Here�1 is the eigenvector associated with the zero eigenvalue 0 andwhich has
k-th element is�1(k) = qdk=vol. Furthermore, the normalized Green’s functionG = T�1=2GT 1=2 is defined as (see [3] page 6),G(u; v) = jV jXi=2 1�i�i(u)�i(v) (4)

where� and� are the eigenvalue and eigenvectors of the normalized LaplacianL.

The normalized Green’s function is hence the generalized inverse of the normalized
LaplacianL. Moreover, it is straightforward to show thatGL = LG = I � �1�T1
and as a result (LG)uv = Æuv � pdudvvol
From Equation 4, the eigenvalues ofL andG have the same sign andL is posi-
tive semidefinite, and soG is also positive semidefinite. SinceG is also symmet-
ric(see [3] page 4), it follows thatG is a kernel. Finally, it is interesting to note that
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the Green’s function is related toP byG = (I � P)�1 = I + P + P2 + � � � = 1Xr=0Pr
2.4 Commute time

We note that thehitting timeQ(u; v) of a random walk on a graph is defined as
the expected number of steps before nodev is visited, commencing from nodeu. The commute timeCT (u; v), on the other hand, is the expected time for the
random walk to travel from nodeu to reach nodev and then return. As a resultCT (u; v) = Q(u; v) +Q(v; u). The hitting timeQ(u; v) is given by [3]Q(u; v) = voldv G(v; v)� voldu G(u; v)
whereG is the Green’s function given in Equation (3). As a result, the commute
time is given byCT (u; v) = Q(u; v)+Q(v; u) = voldu G(u; u)+voldv G(v; v)�voldu G(u; v)�voldv G(v; u)

(5)

As a consequence of Equation (5) the commute time is a metric on the graph. The
reason for this is that if we take the elements ofG as inner products defined in a
Euclidean space,CT will become the norm satisfying:kxi � xjk2 =< xi�xj; xi�xj >=< xi; xi > + < xj; xj > � < xi; xj > � < xj; xi >.

Substituting the spectral expression for the Green’s function into the definition of
the commute time, it is straightforward to show thatCT (u; v) = vol jV jXi=2 1�i  �`i(u)pdu � �i(v)pdv !2 (6)

Hence, the commute time is easily computed from the Laplacian eigensystem. Con-
sider the mapping of the nodes of the graph to the space with co-ordinate matrixY = pvol��1=2�TT�1=2
The matrix can be written in the column formY = (y1jy2j::::jyuj:::yjV j) where the
column vectoryu is the co-ordinate vector of theuth node. Under this embedding of
the nodes, the commute time between the the nodesu andv is simply the Euclidean
distance between the corresponding co-ordinate vectors, i.e.CT (u; v) = (yu �yv)T (yu � yv).
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3 Multilayer Graph Representation and Matching

In this section we provide details of the multilayer graph representation. We com-
mence by describing how the representation is constructed and then detail a simple
matching method.

3.1 Graph derivation and representation

We commence by constructing an augmented graph from the original graph by
adding an auxiliary external node. We refer to this new graphas theaffixation
graph. It is constructed by connecting the additional node to eachof the nodes
on the boundary (or perimeter) of the original graph. Our aimin constructing this
affixation graph is to simulate heat flow from the external node, which acts like an
external heat source. We assign the label� to the auxiliary node, and theaffixation
graphA(V 0; E 0) can be defined byV 0 = V [ f�g andE 0 = E [ f(�; u); 8u 2Boundary(�)g.
By analysing the heat-flow from the auxiliary node on the affixation graph, we
can generate a multilayer representation of the original graph. The idea is to char-
acterise the structure of the graph using the pattern of heat-flow from the source
node. To embark on this study, let us consider the probability of the random walk
with a certain path lengthPr . We can make an estimate of the heat flow on the
graph by taking the average value ofPr according to the path lengthr:D(u; v) = Pr rPr(u; v)Pr Pr(u; v) :
We take the external node� to be the heat source and consider all the random walks
starting from the the affixation node� . The average path distanceD(�; v) for all v inV follows a staircase distribution, which we can use to classify nodes into different
layers.

Figure 1(a) illustrates this staircase property. The nodeswith the same average
distance correspond to the same layer of the graph. The corresponding multilayer
graph representation is shown in Figure 1(b), where the nodes connected by edges
of the same color belong to the same layer.

3.2 Score function and matching process

Our matching process is based on the layers extracted above.To do this, we match
the nodes in each layer in one graph to the nodes of the corresponding layer in a
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Fig. 1. The staircase distribution and a multilayer graph.

second graph. To do this we need a score-function to distinguish the different nodes
in the same layer. Unfortunately, the average path distancecan not be used for
this purpose, since it is too coarsely quantised and can not be used to differentiate
between the nodes in the same layer of a graph. We seek a score function which is
related to the heat kernel, and hence the heat-flow from the external source node,
but gives more salient values for each individual node.

Here we define the score functionSu for nodeu asSu = CT (�; u) which is the
commute time between nodeu and the external source node� . Figure 2(a) shows
a visualisation of the score functions for the Delaunay graph in Figure 1(b). The
score function is visualised as the height on the edges of theconcentric layers of the
graph. The scores for the nodes on the same layer are salient enough to distinguish
them. In Figure 2(b) we show a scatter plot of commute timesCT (u; v) versus the
average path length distanceD(u; v). From this plot it is clear that the commute
time varies more smoothly and has a longer range than the commute time.

Since we have divided the graph into several separate layers, our graph matching
step can proceed on a layer-by-layer basis. To perform the matching process we peel
layers of nodes from the boundary inwards. Each layer is a cycle graph where each
node is connected to its two adjacent nodes only. In the case when a node has only
one neighbour in the layer, the edge between them is duplicated to form a cycle.
We match the nodes in the corresponding layers of different graphs by performing
a cyclic permutation of the nodes. The cyclic permutation permits possible null-
insertions to accommodate missing or extraneous nodes. Thecyclic permutation
minimises the sum-of-differences in commute times betweennodes in the graphs
being matched. IfCl denotes the set of nodes in thekth layer of the graph, then the
permutation� minimises the cost function
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4 Minimum Spanning Tree Representation and Matching

In this section we describe our representation based on the minimum spanning tree
of the hest kernel. As in the previous section, we commence bydescribing how the
representation is constructed, and then detail our matching algorithm.

4.1 Robust graph representation by trees

Our aim here is to re-cast the inexact graph matching problemas an inexact tree
matching problem. The main obstacle here is to locate a tree that is stable to struc-
tural variations in the original graph. One way to do this is to extract a minimum
spanning trees from the graphs under study. However, unlesscare is taken, then the
structure of the extracted spanning trees will vary in an erratic manner with slight
changes in the structure of the original graph. This makes reliable matching impos-
sible. By reducing the graph into a tree, although we obtain asimpler data structure,
we also loose information. Hence, we need a means of extracting a stable tree-like
graph representation but at the same time preserving as muchinformation from the
original graph as possible. Here we argue that commute time provides a solution to
this problem.
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Given a weighted graph�, we generate the commute time matrixCT by computing
the commute time between each pair of nodes. From the commutetime matrix
we construct a complete or fully connected graph�. The weights of the edges in
this graph are the commute-times. In another word, the weight matrix W of the
new graph� satisfies:W�(u; v) = CT (u; v). Our representation is based on the
minimum spanning tree of the fully connected graph� with commute times as
weights. The node weights on the spanning tree are found by summing the edge
weights. The weight on the nodeu is
(u) = Xu;v2V CT (u; v)
The root node of the tree is that having the smallest node-weight and the minimum
spanning tree is generated by the Prim’s method [11] starting from the root node.

Since commute time is a metric on the original graph and it captures global in-
formation rather than the local information, it is likely tobe relatively stable to
structural modifications. According to Rayleigh’s Principle in the theory of electri-
cal networks, commute time can neither be increased by adding an edge or a node,
nor decreased by deleting a single edge or a node. In fact, theimpact of deleting or
adding an edge or a node to the commute time between a pair of nodes is negligible
if they are well connected. For example, if there is node deletion or edge deletion,
then since wherever possible the random walk moves to connect two nodes, the
effect of that corruption is small. The stability of the commute time matrix ensures
that the weight distribution on the derived fully connectedgraph is stable. Hence,
the minimum spanning tree can also be anticipated to be stable.

Edges of the spanning tree correspond to the path of the most probable random
walk. The weights on the nodes of the spanning tree preserve structural information
from the original graph. The nodes on the boundary of a graph together with those
of small degree are relatively inaccessible to the random walk. The reason for this
is that they have a larger average commute time than the remaining nodes. By
contrast, the nodes in the interior of the graph and the nodeswith large degree
are more accessible, and hence have a smaller average commute time. The most
frequently visited nodes in the tree is that with the smallest average commute-time,
and this is the root node. This node is usually located near the the center of a graph
and has a large degree.

Two examples are shown in Figure 3 and Figure 4. In these two figures, we have
shown two types of graphs. The first of these is the Delaunay graph and the second
is the K-nearest neighbour graph. We have also shown the commute time matrices
for the two graphs, the generated complete or fully connected graph and the mini-
mum spanning tree. The main features to note from the plots are as follows. First,
the spanning trees are rather different in structure. Second, there is a more defined
block structure in the commute time matrix for the K-nearestneighbour graph.
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Fig. 3. Delaunay graph example.

To illustrate the problems associated with using the heat-kernel to locate the span-
ning tree, consider the continuous time random walk on the graph. Let~pt be the
vector whose elementpt(i) is the probability of visiting nodei of the graph under
the random walk. The probability vector evolves under the equation�~pt�t = �L~pt
which has the solution ~pt = exp[�Lt℄~p0
As a result~pt = Ht~p0. Consequently the heat kernel determines the random walk.
Hence, if we use the heat kernel as the edge weight function ofthe graph then we
can explore how the spanning spanning trees associated withthe heat kernel evolve
with time.

In Figure 5 for one of the graphs used in our experiments, we illustrate the evolution
of the spanning tree with time. The first image in the sequenceshows the input
graph, and the remaining images show the recovered spanningtrees as time elapses.
Initially, the tree is rooted near the centre of the graph with terminal nodes on the
boundary. The recovered tree has many branches and is very “bushy”. As time
evolves, the pattern changes. The tree becomes rather string-like and wraps itself

12



100 200 300 400 500
0

100

200

300

400

500

12
34

5 678
9 10 11 12

1314

15
16171819

20 2122
2324

25

26 27

28
29

30

31

32

Number of nodes:32

5 10 15 20 25 30

5

10

15

20

25

30

100 200 300 400 500
0

100

200

300

400

500

12
34

5 678
9 10 11 12

1314

15
16171819

20 2122
2324

25

26 27

28
29

30

31

32

Number of nodes:32

100 200 300 400 500
0

100

200

300

400

500

12
34

5 678
9 10 11 12

1314

15
16171819

20 2122
2324

25

26 27

28
29

30

31

32

Number of nodes:32

Original K nearest graph with k=5 Commute time matrix 

Derivated complete graph Minimum spanning tree 

Fig. 4. K nearest neighbour graph example.

around the boundary, with branches extending it to the centre of the original graph.
Hence, the structures are unstable and not suitable for matching.

4.2 Tree edit distance and inexact tree matching

With stable minimum spanning trees to hand, then the next step is to match them.
Here we use Torsello and Hancock’s [18] divide and conquer tree matching method.
The method provides a means of computing the tree edit distance, and locates the
matches that minimise the distance using relaxation labelling. To compute the tree
edit distance, the algorithm exploits the fact that any treeobtained with a sequence
of node deletion operations is a subtree of the transitive closure of the original tree.
As a result the inexact tree matching problem can be cast as that of locating the
maximum common subtree by searching for maximal cliques of the directed asso-
ciation graph. The methods poses the matching problem as a max clique problem,
and uses the relaxation labelling method of Pelillo [10,9] to obtain a solution.

The steps of the divide and conquer method are as follows:

(1) Given two treest andt0, calculate their transitive closureTCt andTCt0 .
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Fig. 5. Minimum spanning tree with varying t.

(2) Construct the directed association graph (DAG) ofTCt andTCt0 .
(3) The inexact tree matching problem can be solved by findingthe common con-

sistent subtree of the two DAGs.
(4) The problem of locating the maximum common subtree can betransformed

into that of locating a max-weighted clique. This can be effected using a num-
ber of classical methods, including relaxation labelling [18] or quadratic pro-
gramming [10].

5 Experiments

In this section, we carry out an experimental evaluation of our two graph simpli-
fication methods. We test them on both Delaunay graphs and K-nearest neighbour
graphs with variable size. We also evaluate the stability ofour methods with respect
to edge corruption. Finally, we compare the properties of the two simplification
methods.
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5.1 Multilayer graph matching

The data used in our study is furnished by a sequence of views of a model-house
taken from different camera viewing directions. In order toconvert the images into
abstract graphs for matching, we extract point features using a corner detector. Our
graphs are the Delaunay triangulations of the corner-features. Examples of the im-
ages are shown in Figure 7.

We have matched the first image to each of the subsequent images in the sequence
by using the multilayer matching method outlined earlier inthis paper. The results
are compared with those obtained using the method of Luo and Hancock [7] and the
partition matching method of Qiu and Hancock [12] in Table 1.This table contains
the number of detected corners to be matched, the number of correct correspon-
dences, the number of missed corners and the number of miss-matched corners.
Figure 6 shows the correct correspondence rate as a functionof the difference in
view number for the three methods based on the data in Table 1.

From the results, it is clear that our new method out performsboth Luo and Han-
cock’s EM method and, Qiu and Hancock’s partition matching method for large
differences in viewing angles. Figure 8 shows the results for some example image
pairs. There are clearly significant structural differences in the images from which
the graphs are extracted including rotation, scaling and perspective distortion. Even
in the worst case, our method has a correct correspondence rate of86:7%.
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Fig. 7. CMU house sequence.

16



12

34
5 6

78

9
10 11 12

13
14

15
1617

18
19

20 21
22

23
24

25

26
27

28
29

30

Number of nodes:
30

12

34
5 6

78

9 10 11
12

13
14

15
1617

18
19

20 21
22

23
24

25

26
27

28

29

30

31

32

Number of nodes:
32

(a) 1st image to 2rd image.
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(b) 1st image to 5th image.
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(c) 1st image to 7th image.
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Fig. 8. Matched samples.
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Method House index 0 1 2 3 4 5 6 7 8 9

Corners 30 32 32 30 30 32 30 30 30 31

EM[7] Correct - 29 26 24 17 13 11 5 3 0

False - 0 2 3 8 11 12 15 19 24

Missed - 1 2 3 5 6 7 10 8 6

Partition Correct - 26 24 20 19 17 14 11 13 11

matching[12] False - 3 5 8 11 12 16 15 17 19

Missed - 1 1 2 0 1 0 4 0 0

Multilayer Correct - 27 27 27 27 26 27 27 27 27

matching False - 3 3 2 2 3 2 2 2 2

Missed - 0 0 1 1 1 1 1 1 1
Table 1
Correspondence results and comparison with the other methods.

5.2 Inexact graph matching by spanning trees

We now turn our attention to illustrating the utility of our spanning tree represen-
tation for graph matching. We investigate the robustness ofthe method under local
structural change as well as random edge corruption.

5.2.1 Spanning Tree Robustness

In this section, we aim to compare the stability of the spanning trees delivered by
our commute time method with those obtained directly using the Prim’s method
[11].

The data used here is furnished by the sequences of views of model-houses. The
images in the sequence are taken from different camera directions. In order to con-
vert the images into abstract graphs for matching, we extract point features using a
corner detector and construct the nearest neighbour graph of the points.

In Figure 9, we show three groups of houses with an increasingcomplexity in terms
of the number of points detected and the image structure. Five examples are shown
in each group in a column order. In each group, the top row shows the original
images overlaid with their 5 nearest neighbour graph, the second row the spanning
trees obtained from Prim’s method and the third row the spanning trees obtained
using our commute time method.

It is clear from the first group of images in the figure that our method delivers
more stable spanning trees. As the view point changes, thereis little change in the
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spanning tree structure. In the second group, the total number of feature points has
been approximately doubled and the structure of the extracted 5-nearest neighbour
graph is more variable. Our commute time method still delivers very stable span-
ning trees. Compared with the second row in this group, our spanning trees do not
result in erroneous disconnections or connections of the branches and maintain a
consistent tree shape. The third group is the most complex one with approximately
three times the number of nodes as the first group. Although the trees are quite
complex, they are still stable and the local structure are well preserved.

5.2.2 Inexact Graph Matching:

Matching with local structure variance: The data used here is the same as the
previous section. However, here we study Delaunay graphs inaddition to the k-
nearest neighbour graph (with varying k).

In Figure 10, we show five examples from the sequence of 30 views of the house.
The top row shows the original image, the second row the Delaunay graphs, the
third row the minimum spanning trees obtained from the Delaunay graph commute
times, the fourth row the 5 nearest neighbour graphs, and thefifth row the minimum
spanning tree obtained from the k-nearest neighbour graph commute times. From
the figure it is clear that although the structure of the graphs varies, the spanning
trees are quite stable under these changes. This demonstrates that the minimum
spanning tree delivered by the commute time can be used as a simple but stable
graph representation. It is also interesting to note that the k-nearest neighbour graph
gives more stable trees than the Delaunay graph.

Next we aim to investigate whether the spanning trees can be used for the pur-
poses of graph-matching. We have matched the first image in the sequence to each
of the subsequent images using the divide and conquer tree matching method out-
lined earlier in this paper. The results are compared with those obtained using the
method of Luo and Hancock [7] and the partition matching method of Qiu and
Hancock [12]. Figure 11 shows us the correct correspondencerate as a function of
the difference in view number. From the results, it is clear that our new method out-
performs both Luo and Hancock’s EM method and, Qiu and Hancock’s partition
matching method for large differences in viewing angles. Italso demonstrates that
the k-nearest neighbour graph outperforms the Delaunay graph in delivering stable
structure. There are clearly significant geometric distortions present in the images
including effects due to rotation and perspectivity, and these give rise to significant
structural differences in the resulting graphs. Even in theworst case, our method
based on the k-nearest neighbour graph has a correct correspondence rate of80%.

Matching with Random Edge Corruption: We now focus on testing the stability
the spanning trees under controlled random noise. To do thiswe delete a controlled
fraction of edges from the initial graphs (either Delaunay or k-nearest neighbour).
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Fig. 9. Three sequences of model houses with their spanning tree representation.20
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Fig. 10. House images, their graphs and extracted trees.

In Figure 12 we show the effect of this deletion process for the graphs shown earlier.
The number at the top of each column is the percentage of edgesdeleted. The first
and the third rows of the figure show the Delaunay graph and the5-nearest neigh-
bour graph after edge deletion. The second and fourth rows show the corresponding
spanning trees. From the figure it is clear that the tree structure is stable under edge
corruption, and again the k-neatest graph outperforms the Delaunay graph.

We have matched the edge-corrupted trees to the original trees, and have computed
the fraction of correct correspondences. The results are shown in Figure 13. The
fraction of correct correspondences decreases in a linear fashion with edge corrup-
tion. The different curves in the plot are for the Delaunay graph and the k-nearest
neighbour graph. The k-nearest neighbour graph outperforms the Delaunay graph
by a margin of about 10% at 50% edge corruption.
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Fig. 12. Random edge deletion.

5.3 Comparison of the two simplified graph representations

We now explore the relative merits of the two graph simplification methods pre-
sented in this paper. Figure 14 shows the fraction of correctmatches for the images
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Fig. 13. Graph corruption matching results.

in the CMU house data-set. The curves in the plot are taken from Figures 11 and
13. Additionally, as a pink line we show the result of using the multi-layer simpli-
fication method on the 5 nearest neighbour graphs. From the figure it is clear that
the multi-layer simplification method delivers the best performance when used with
Delaunay graphs (blue line). For the Delaunay graph, the multi-layer representation
is stable under graph variation and the composition of each layer is not modified
significantly (see Figure 6 for an illustration). However, when this is applied to the
5-nearest neighbour graph, it does not perform well. The reason for this is that the
k-nearest neighbour graph does not lend itself to a layer decomposition. Figure15
illustrates the problems. In this example, note how the nodes of the inner green
layer are compressed together.

The spanning tree representation gives the best performance when applied to the 5-
nearest neighbour graphs and the worst performance for the Delaunay graphs. The
reason is that the tree representations for the 5-nearest neighbour graphs are more
stable than those for the Delaunay graphs under variations in graph structure (for a
comparison see Figure 10).

Overall the stability of the spanning tree representation is better than that for the
multi-layer representation. The reason for this is that thestructure of layers can be
adversely affected by edge corruption. of the edges. An example is shown in Figure
16 with 12:6% of edges randomly pruned. In this example, the connectivityof the
layer graph displayed in light blue is destroyed.
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Fig. 14. Comparison of the two methods on graph matching.
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Fig. 15. An example of multi-layer graph of a 5 nearest neighbour graph.

6 Conclusion

In this paper we have described the how commute time can be computed from the
Laplacian spectrum. This analysis relies on the discrete Green’s function of the
graph, and we have reviewed the properties of Green’s function. Two of the most
important of these are that the Green’s function is a kernel and that the commute
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Fig. 16. An example of a multi-layer graph with edge corruption.

time is a metric.

We have shown how to use the commute time to develop two graph simplification
algorithms. The first of these uses the commute time to an auxiliary node to extract
a multi-layer representation. The second simplification method uses the commute
time to extract spanning trees from graphs. Experimentally, we show that our tree
representation is not only stable, but also preserves sufficient structural information
to be useful for the purposes of graph matching.
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