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Abstract

This paper exploits the properties of the commute time ferghrposes of graph simpli-
fication and matching. Our starting point is the lazy randoatkvon the graph, which is

determined by the heat-kernel of the graph and can be conhfrdm the spectrum of

the graph Laplacian. We characterise the random walk usiagdmmute time between
nodes, and show how this quantity may be computed from théatiam spectrum using

the discrete Green’s function. In this paper, we explore different, but essentially dual,

simplified graph representations delivered by the commiate.tThe first representation
decomposes graphs into concentric layers. To do this we anigiime graph with an auxil-

iary node which acts as a heat source. We use the pattern ofictantimes from this node

to decompose the graph into a sequence of layers. Our seepresentation is based on
the the minimum spanning tree of the commute time matrix. 3@nning trees located
using commute time prove to be stable to structural vanati®e match the graphs by
applying a tree-matching method to the spanning trees. \Meriement with the method on

synthetic and real-world image data, where it proves to facfe.
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1 Introduction

Spectral graph theory [2] is concerned with characteriiiegstructural properties
of graphs using information conveyed by the eigenvaluesedgenvectors of the
Laplacian matrix (the degree matrix minus the adjacencyir)aOne of the most
important tasks that arises in the analysis of graphs isofhetumerating the set of
paths (and their lengths) between pairs of nodes. This psozan be characterised
using the heat equation [5]. The heat kernel [5] is the sotudif the heat-equation
on the graph and is found by exponentiating the normalisgdilcaan of the graph
(the identity matrix minus the degree normalised adjacenalyix) with time. As a
result, the heat kernel can be computed efficiently by expissieng the Laplacian
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eigensystem [2]. The heat kernel can be viewed as captunmgvay in which

information flows with time across the edges of the graph |&ge times the heat
kernel is dominated by the Fiedler vector, and so it is edeitato the random
walk.

Random walks [17] have found widespread use in informatsdnaval and struc-
tural pattern analysis. For instance, the random walk idb#ses of the Page-Rank
algorithm which is used by the Googlebot search engine fltdmputer vision
random walks have been used for image segmentation [8] astkding [15]. More
recently both Gori, Maggini and Sarti [4], and, Robles-Kelhd Hancock [14,13]
have used random walks to sort the nodes of graphs for theopespof graph-
matching. Most of these methods use a simple approximatadesisation of the
random walk based either on the leading eigenvector of @ngsition probabil-
ity matrix, or equivalently the Fiedler vector of the Lagkat matrix [6]. In gen-
eral though, the random walk is not edge-connected on thghgtdence, it may
not preserve the edge structure and can prove to be an itneffeeay of captur-
ing the structural properties of the graph. In an attemptwteraome this problem
Robles-Kelly and Hancock explore two approaches. The firttese is to use a
post-processing step to recover an edge connected pathifeocomponents of the
leading eigenvector [14]. The second refinement is to paseettovery of an edge-
ordered path as one of graph seriation using a utility famcind to recover an
approximate solution to this problem using graph-spe¢t®l eigenvector) meth-
ods [13].

This work on path based methods for graph matching is cledolsely akin with
graph spectral techniques, since both rely on the eigeesalnd eigenvectors of
the Laplacian matrix. There has been a considerable bodyodf aimed at us-
ing graph-spectra for the purposes of matching. Some of tsewiork was done
by Umeyama [19] who showed how graphs with the same numbeodés) but
different edge structure. The method computes an apprégimade permutation
matrix by taking the outer-product of the singular vectdrthe adjacency matrices
for the graphs being matched. Luo and Hancock [7] have shamnthe method
can be rendered robust to differences in the numbers of ngsleg the apparatus
of the EM algorithm. Eigenvalues and eigenvectors of tha@jcy matrix or the
Laplacian matrix have also been used to cluster [20] andxiggaphs [16]. An
alternative to using graph-spectra as features for thegsepof graph matching is
to use eigenvector methods to extract a simplified strud¢tore a graph which is
more easily matched than the original graph. Although inegeaph-matching is
a problem of potentially exponential complexity, the perhlcan be simplified by
decomposing the graphs to be matched into smaller subgosystisictures.

However, a single eigenvector can not be used to determime dedailed infor-
mation concerning the random walk. The aim in this paper ish@racterise the
properties of the random walk in a finer way using the commiateg. Thehitting
timeQ(u, v) of arandom walk on a graph is defined as the expected numbtepsf s



before node is visited, commencing from node Thecommute time'T (u, v),

on the other hand, is the expected time for the random walkat@k from node:

to reach node and then return. Both the hitting time and the commute tinre ca
be computed from the discrete Green’s function or pseudexse of the Laplacian
matrix. The idea that is central to this paper is to use thengota time to extract

a simplified ordered structure from the graph, and to usetthetsres for the pur-
poses of graph matching. Here we present two rather diffdbabhessentially dual,
simplification methods.

The first graph simplification method is based on the conuelatyers that result
from repeatedly peeling away the boundary of the graph. Qativiation in adopt-

ing this representation is that the pattern of concentyergis less likely to be
disturbed by structural noise than the random walk, whichlmadiverted. To ad-
dress this problem using the apparatus of the heat equateaugment the graph
with an auxiliary node. This node is connected to each of thenary nodes by
an edge, and acts as a heat source. Concentric layers aeetehiaged using the
commute time from the auxiliary node. We match graphs by rséply matching

the concentric layers.

The second graph simplification method uses the minimumrspgriree associ-
ated with the heat kernel as a way of characterising the gtdpivever, there is a
difficulty with directly using the heat kernel, since the &éparameter of the kernel
must be set. As we will show later in the paper, the spannaestevolve in a rather
interesting way with time. For small time, they are rootedmine centre of the
graph, and the branches connect to terminal nodes that areedroundary of the
graph. As time increases, the tree becomes string like, andswtself from the
centre of the graph to the perimeter. As it does so, the numibrminal nodes
decreases, i.e. the large time tree has the appearancerofcatetwhich a small
number of short branches or ligatures are attached. Herat®iee must be made
in setting the time parameter.

One way to overcome this problem is to use statistical ptaseof the random
walk. Hence, in this paper we use the minimum spanning treecésted with the
minimum commute time as a way of characterising the streatdira graph. We
construct an auxiliary fully connected graph in which theghs are the commute
times between pairs of nodes in the original graph. We therPusgn’s method to
locate the spanning tree that minimises the sum of weiglits.sSpanning tree is
rooted at the node of minimum weight in the auxiliary grapig &his is located
near the centre of the original graph.

The commute time has properties that suggest that it canitealflto the iden-
tification of stable spanning trees. A pair of nodes in thegraill have a small
commute time value if one of three conditions is satisfieck fitst of these is that
they are close together, i.e. the length of the path betwesan ts small. The second
case is if the sum of the weights on the edges connecting thesrnie small. Finally,



the commute time is small if the pair of nodes are connecteddnyy paths.

The outline of this paper is as follows. In Section 2 we revibe properties of
the commute time and its relationship with the Laplaciareegystem. Section 3
describes how the multi-layer representations can beagtidrom graphs using
commute time, and outlines how the representation can behat In Section 4
we turn our attention to the tree-based representationtandatching. Section 5
presents experiments with both representations and cesplaeir performance.
Finally, Section 6 presents conclusions and outlines tioes for future investiga-
tion.

2 Heat Kernel, Lazy Random Walks, Green’s Function and Commte Time

In this section, we review the theory underpinning the coraton of the commute
time. We commence by introducing the heat-kernel of a grapkt we show how
the heat kernel is related to the lazy random walk on a grapth tlken we show
how the discrete Green’s function can be computed from thpdalcean spectrum.
Finally, we show that the commute time is a metric that is ioleifrom the Green’s
function.

2.1 Heat kernel

Consider the the weighted graph= (V, E, W) whereV is the set of nodes,

E CV x Visthe set of edges anidl is the|V| x |V'| edge weight matrix. Further
let T = diag(d,;v € V) be the diagonal weighted degree matrix with elements
Tuu = >y W(u,v) andA be the adjacency matrix. The un-normalized weighted
Laplacian matrix is given by, = T'— W and the normalized weighted Laplacian
matrix is defined to b& = T-Y/2LT~'/? | and has elements

1 if u=nwov

Lr(u,v) = —% if u#vand(u,v) € E

0 otherwise

The spectral decomposition of the normalized Laplaciaf is PA®”. Here A =
diag(Ai, Ao, ..., Ajv|) is the diagonal matrix with the ordered eigenvalOes \; <
Ag... < Ay as elements. The eigenvector matdix= (¢ |¢|....|¢;v|) has the
correspondingly ordered eigenvectors as columns.

In the paper we are interested in the heat equation assoevitethe graph Lapla-



cian. The heat kerné¥, satisfies the partial differential equation

oM,
W - —EHt
wheret is time. The solution of the heat-equation is found by expdiaéing the

Laplacian eigenspectrum i.e.
H; = exp[—tL] = ® exp[—tA]DT

The heat kernel is g7| x |V/| matrix, and for the nodes andv of the grapH the
element of the matrix is

Vi

Hulu,v) = 3 exp[=Ait]di(u)i(v)

2.2 Lazy random walk

Let us consider the normalised adjacency matrix marix [ — £ = T'/2PT~'/2,
wherel is the identity matrix. We can re-express the heat kerneldsfopming the
McLaurin expansion,

HI-P) R -
% — e - — e PT_
t € e ; 7‘!

Using the spectral decomposition of the normalized Laplaoive havéP” = (I —
L) =®&(I — A)"®" and as a result

J W(Uz’, Uz‘+1)

Plne) = 301 - AV = ST~ e

i=1 Tr 4

The normalized probability matriR" (u, v) is hence the sum of the probabilities of
all the random walks of lengthr connecting node andv. As a result the heat
kernel is the continuous time limit of the lazy random wal&.show this, consider
a lazy random walk with transition matrix

1%
R=(1—-a)l+ T
The random walk migrates between different nodes with goiihya o and remains
static at a node with probability— «. Leta = agAt whereAt = % Consider the
limit At — 0

1 N
lim RN = lim <I+ (g — I)a0—> — 6(%*1)060 (1)

N—o00 N—o00



while

¥—1:T1A—1:T1(T—L)—1:—T1L )

Now consider the discrete Laplace operatowith the property
L= TI/QATfl/Q — T71/2LT71/2

which impliesA = LT-'. As a result, we gdimy_,., RN = e~22°, which is just
the expression for the heat kernel.

2.3 Green’s function

Now consider the discrete Laplace operator= T-'/2£T"/2. The Green’s func-
tion is the left inverse operator of the Laplace operatpdefined by
GA®,v) = I(u,v) — 2
u,v) = u,v) — —
’ ’ vol
wherevol = 3°,cv 1 d, is the volume of the graph. A physical interpretation of the
Green’s function is the temperature at a node in the graphaaeinit heat source

applied to the external node. It is related with the heat é&ek) in the following
manner

Gluv) = [T (M) = 61 (w1 (v)) d, 2t ©

Here ¢, is the eigenvector associated with the zero eigenvalue Onduch has
k-th element isp; (k) = +/d;/vol. Furthermore, the normalized Green'’s function
G =T '?2GT'? is defined as (see [3] page 6),

UROED SEATAL @

where) and¢ are the eigenvalue and eigenvectors of the normalized tiapl&.

The normalized Green'’s function is hence the generaliaegtge of the normalized
LaplacianL. Moreover, it is straightforward to show that

GL=LG=1—¢¢7

and as a result
d,d

L uv — 6uv - Tt

(£9) vol
From Equation 4, the eigenvalues 6fandG have the same sign antlis posi-
tive semidefinite, and s@ is also positive semidefinite. Sin¢gis also symmet-
ric(see [3] page 4), it follows thal is a kernel. Finally, it is interesting to note that




the Green’s function is related @ by

G=I-P)'=1+P+P°+---=> P
r=0

2.4 Commute time

We note that théiitting time Q(u, v) of a random walk on a graph is defined as
the expected number of steps before neds visited, commencing from node
u. The commute timeC'T (u, v), on the other hand, is the expected time for the
random walk to travel from node to reach node and then return. As a result
CT(u,v) = Q(u,v) + Q(v,u). The hitting timeQ (u, v) is given by [3]

l l
,lilov G('U: U) - %G(u,v)

Q(u,v) =

where( is the Green'’s function given in Equation (3). As a resule dommute
time is given by

OT(u,) = Qu, 0)+Q(v, u) = S0 Glu, )+ 2 G(w, v)~ 22 G, )

G(v,u)
)

As a consequence of Equation (5) the commute time is a metribegraph. The
reason for this is that if we take the elementgzbés inner products defined in a
Euclidean space; T will become the norm satisfyindz; — ;|| =< z;—x;, z;—

T >=<TyT; >+ <xj,x; >— < x3,T; >— < T;T; >.

Substituting the spectral expression for the Green’s fanahto the definition of
the commute time, it is straightforward to show that

Vi i(u ()
CT(u,v) = volz2)\li <¢\/ZEi_u> - M\/d_:> (6)

Hence, the commute time is easily computed from the Laptegigensystem. Con-
sider the mapping of the nodes of the graph to the space witiidioate matrix

Y = Vol A 12pTT-1/2

The matrix can be written in the column formh = (y |y|.... |yu|--.yv|) Where the
column vectory, is the co-ordinate vector of thé” node. Under this embedding of
the nodes, the commute time between the the nodeslv is simply the Euclidean
distance between the corresponding co-ordinate vecter;'T' (u,v) = (y, —

yv)T(yu - yv)'



3 Multilayer Graph Representation and Matching

In this section we provide details of the multilayer grappresentation. We com-
mence by describing how the representation is construcigtheen detail a simple
matching method.

3.1 Graph derivation and representation

We commence by constructing an augmented graph from thenakigraph by
adding an auxiliary external node. We refer to this new grapltheaffixation
graph It is constructed by connecting the additional node to aszicthe nodes
on the boundary (or perimeter) of the original graph. Our giroonstructing this
affixation graph is to simulate heat flow from the externaleyoshich acts like an
external heat source. We assign the labt the auxiliary node, and thedfixation
graph A(V', E') can be defined by’ = V U {r} andE' = E U {(7,u),Vu €
Boundary(T)}.

By analysing the heat-flow from the auxiliary node on the afibn graph, we
can generate a multilayer representation of the origirggblgr The idea is to char-
acterise the structure of the graph using the pattern otfleatfrom the source
node. To embark on this study, let us consider the probglufithe random walk
with a certain path lengt®” . We can make an estimate of the heat flow on the
graph by taking the average value@f according to the path length

Y P (u,v)
B ZT Pr(u7 v) .

We take the external nodeto be the heat source and consider all the random walks
starting from the the affixation node The average path distanPér, v) for all v in

V follows a staircase distribution, which we can use to cfgs®des into different
layers.

D(u,v)

Figure 1(a) illustrates this staircase property. The nogliéls the same average
distance correspond to the same layer of the graph. Thespameding multilayer
graph representation is shown in Figure 1(b), where thesiodenected by edges
of the same color belong to the same layer.

3.2 Score function and matching process

Our matching process is based on the layers extracted abmde. this, we match
the nodes in each layer in one graph to the nodes of the comdsp layer in a
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Fig. 1. The staircase distribution and a multilayer graph.

second graph. To do this we need a score-function to digshdhe different nodes
in the same layer. Unfortunately, the average path distaacenot be used for
this purpose, since it is too coarsely quantised and canenaséd to differentiate
between the nodes in the same layer of a graph. We seek a soot®h which is
related to the heat kernel, and hence the heat-flow from ttezrex source node,
but gives more salient values for each individual node.

Here we define the score functiciy for nodeu asS, = CT(r,u) which is the
commute time between nodeand the external source nodeFigure 2(a) shows
a visualisation of the score functions for the Delaunay krispFigure 1(b). The
score function is visualised as the height on the edges aitheentric layers of the
graph. The scores for the nodes on the same layer are salmngle to distinguish
them. In Figure 2(b) we show a scatter plot of commute tifi#$u, v) versus the
average path length distan®¥u, v). From this plot it is clear that the commute
time varies more smoothly and has a longer range than the ctertime.

Since we have divided the graph into several separate layergraph matching
step can proceed on a layer-by-layer basis. To perform tiehing process we peel
layers of nodes from the boundary inwards. Each layer is e graph where each
node is connected to its two adjacent nodes only. In the chse & node has only
one neighbour in the layer, the edge between them is duptidat form a cycle.
We match the nodes in the corresponding layers of differeaytgs by performing
a cyclic permutation of the nodes. The cyclic permutatiomis possible null-
insertions to accommodate missing or extraneous nodescyidiie permutation
minimises the sum-of-differences in commute times betwestes in the graphs
being matched. If’; denotes the set of nodes in thih layer of the graph, then the
permutatiorp minimises the cost function
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4 Minimum Spanning Tree Representation and Matching

In this section we describe our representation based onitiienam spanning tree
of the hest kernel. As in the previous section, we commenatebgribing how the
representation is constructed, and then detail our majcigorithm.

4.1 Robust graph representation by trees

Our aim here is to re-cast the inexact graph matching prolalerman inexact tree
matching problem. The main obstacle here is to locate aliaad stable to struc-
tural variations in the original graph. One way to do thisasktract a minimum
spanning trees from the graphs under study. However, ucéesss taken, then the
structure of the extracted spanning trees will vary in aatermanner with slight
changes in the structure of the original graph. This makesbte matching impos-
sible. By reducing the graph into a tree, although we obtaimpler data structure,
we also loose information. Hence, we need a means of exigpatstable tree-like
graph representation but at the same time preserving asimfocmation from the
original graph as possible. Here we argue that commute tnmages a solution to
this problem.

10



Given a weighted graph, we generate the commute time matfiX’ by computing
the commute time between each pair of nodes. From the comtimgematrix
we construct a complete or fully connected gra&phThe weights of the edges in
this graph are the commute-times. In another word, the weigdtrix 1/ of the
new grapho satisfiesWeg(u,v) = CT(u,v). Our representation is based on the
minimum spanning tree of the fully connected graplwith commute times as
weights. The node weights on the spanning tree are found toynsng the edge
weights. The weight on the nodeis

Qu) = > CT(u,v)

u, eV

The root node of the tree is that having the smallest nodgiweaind the minimum
spanning tree is generated by the Prim’s method [11] staftom the root node.

Since commute time is a metric on the original graph and itwag global in-
formation rather than the local information, it is likely b& relatively stable to
structural modifications. According to Rayleigh’s Prineim the theory of electri-
cal networks, commute time can neither be increased by gddtiredge or a node,
nor decreased by deleting a single edge or a node. In fadtniheect of deleting or
adding an edge or a node to the commute time between a paide§i®negligible
if they are well connected. For example, if there is nodetamieor edge deletion,
then since wherever possible the random walk moves to cortwecnodes, the
effect of that corruption is small. The stability of the conmi@time matrix ensures
that the weight distribution on the derived fully connectgdph is stable. Hence,
the minimum spanning tree can also be anticipated to beestabl

Edges of the spanning tree correspond to the path of the moisalple random
walk. The weights on the nodes of the spanning tree presenasral information
from the original graph. The nodes on the boundary of a gragéther with those
of small degree are relatively inaccessible to the randoik.\Wée reason for this
is that they have a larger average commute time than the nemanodes. By
contrast, the nodes in the interior of the graph and the nadtbslarge degree
are more accessible, and hence have a smaller average cerimet The most
frequently visited nodes in the tree is that with the smaldgsrage commute-time,
and this is the root node. This node is usually located nesittl center of a graph
and has a large degree.

Two examples are shown in Figure 3 and Figure 4. In these twoefsy we have
shown two types of graphs. The first of these is the Delaunagtgand the second
is the K-nearest neighbour graph. We have also shown the ctertrme matrices
for the two graphs, the generated complete or fully conmegtaph and the mini-
mum spanning tree. The main features to note from the pletasfollows. First,
the spanning trees are rather different in structure. Skdbere is a more defined
block structure in the commute time matrix for the K-nearesghbour graph.

11



Original Delaunay graph Commute time matrix
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Fig. 3. Delaunay graph example.

To illustrate the problems associated with using the heateéd to locate the span-
ning tree, consider the continuous time random walk on tlaplyrLetp; be the
vector whose elemeni (i) is the probability of visiting node of the graph under
the random walk. The probability vector evolves under theagign

ot

— = L

ot Pt

which has the solution

P = exp[—Lt]py
As a resulty, = H;py. Consequently the heat kernel determines the random walk.
Hence, if we use the heat kernel as the edge weight functitimeograph then we
can explore how the spanning spanning trees associatethsitieat kernel evolve
with time.

In Figure 5 for one of the graphs used in our experiments, lwgtihte the evolution
of the spanning tree with time. The first image in the sequeshoavs the input
graph, and the remaining images show the recovered spaineesjs time elapses.
Initially, the tree is rooted near the centre of the grapthwerminal nodes on the
boundary. The recovered tree has many branches and is veshyb As time
evolves, the pattern changes. The tree becomes ratheg-Bkenand wraps itself

12



Original K nearest graph with k=5 Commute time matrix
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Fig. 4. K nearest neighbour graph example.

around the boundary, with branches extending it to the eaftthe original graph.
Hence, the structures are unstable and not suitable fohmgtc

4.2 Tree edit distance and inexact tree matching

With stable minimum spanning trees to hand, then the negtist®® match them.
Here we use Torsello and Hancock’s [18] divide and congeerrmatching method.
The method provides a means of computing the tree edit distamd locates the
matches that minimise the distance using relaxation leigelTo compute the tree
edit distance, the algorithm exploits the fact that any tleined with a sequence
of node deletion operations is a subtree of the transitivewk of the original tree.
As a result the inexact tree matching problem can be castaa®tHocating the
maximum common subtree by searching for maximal cliqueb@fiirected asso-
ciation graph. The methods poses the matching problem ax @ligae problem,
and uses the relaxation labelling method of Pelillo [10g9¢btain a solution.

The steps of the divide and conquer method are as follows:

(1) Giventwo treeg andt’, calculate their transitive closuiieC; and7C.

13



Fig. 5. Minimum spanning tree with varying t.

(2) Construct the directed association graph (DAGJ 6f, andTC'y .

(3) The inexact tree matching problem can be solved by finthaggommon con-
sistent subtree of the two DAGs.

(4) The problem of locating the maximum common subtree catrdmsformed
into that of locating a max-weighted clique. This can bea#d using a num-
ber of classical methods, including relaxation labellih8][or quadratic pro-
gramming [10].

5 Experiments

In this section, we carry out an experimental evaluationwfteo graph simpli-
fication methods. We test them on both Delaunay graphs anedaest neighbour
graphs with variable size. We also evaluate the stabiliupimethods with respect
to edge corruption. Finally, we compare the properties efttho simplification
methods.

14
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Fig. 6. Comparison of results.

5.1 Multilayer graph matching

The data used in our study is furnished by a sequence of vieasrmdel-house

taken from different camera viewing directions. In ordectoovert the images into
abstract graphs for matching, we extract point featuresgusicorner detector. Our
graphs are the Delaunay triangulations of the corner-featiexamples of the im-
ages are shown in Figure 7.

We have matched the first image to each of the subsequentsnratee sequence
by using the multilayer matching method outlined earliethis paper. The results
are compared with those obtained using the method of Luo amd ¢tk [7] and the
partition matching method of Qiu and Hancock [12] in Tabl&kis table contains
the number of detected corners to be matched, the numbemr@icteorrespon-
dences, the number of missed corners and the number of naisdwed corners.
Figure 6 shows the correct correspondence rate as a furddtithre difference in

view number for the three methods based on the data in Table 1.

From the results, it is clear that our new method out perfdooth Luo and Han-
cock’s EM method and, Qiu and Hancock’s partition matchirgthod for large
differences in viewing angles. Figure 8 shows the resultsdémne example image
pairs. There are clearly significant structural differenitethe images from which
the graphs are extracted including rotation, scaling ansjgeetive distortion. Even
in the worst case, our method has a correct correspondetecef 86.7% .
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Fig. 7. CMU house sequence.
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(d) 1st image to 10th image.
Fig. 8. Matched samples.
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Method Houseindex O [ 1 | 2 | 3 |4 | 5|6 |7 |8]|9
Corners | 303232303032 |30(30|30]|31
EM[7] Correct - 129126124 |17(13|11, 53| 0
False -1 0] 2|3|8|11|12|15|19)|24
Missed -11,12|3|5|6|7|10|8]|6
Partition Correct - 126(124|120/119|17|14|11|13| 11
matching[12] False -1 3| 5|8|11/12|16|15|17 ]| 19
Missed -/11(1}2,0(1]0, 400
Multilayer Correct - | 27127 | 27| 27| 26| 27| 27 | 27 | 27
matching False - 131322 13|2|2]2]2
Missed -{o0jo0f1}{1212|1|1]|1)|1

Table 1
Correspondence results and comparison with the other metho

5.2 Inexact graph matching by spanning trees

We now turn our attention to illustrating the utility of oupanning tree represen-
tation for graph matching. We investigate the robustneslsemethod under local
structural change as well as random edge corruption.

5.2.1 Spanning Tree Robustness

In this section, we aim to compare the stability of the spagniees delivered by
our commute time method with those obtained directly usirggRrim’s method
[11].

The data used here is furnished by the sequences of views aé¢lrhouses. The
images in the sequence are taken from different cameratidinscin order to con-
vert the images into abstract graphs for matching, we exp@iat features using a
corner detector and construct the nearest neighbour gifapk points.

In Figure 9, we show three groups of houses with an increasingplexity in terms
of the number of points detected and the image structure.dxamples are shown
in each group in a column order. In each group, the top row shitw original
images overlaid with their 5 nearest neighbour graph, thersrow the spanning
trees obtained from Prim’s method and the third row the sipgninees obtained
using our commute time method.

It is clear from the first group of images in the figure that owstinod delivers
more stable spanning trees. As the view point changes, ihétiée change in the
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spanning tree structure. In the second group, the total puofifeature points has
been approximately doubled and the structure of the extlgstnearest neighbour
graph is more variable. Our commute time method still detiweery stable span-
ning trees. Compared with the second row in this group, oansing trees do not
result in erroneous disconnections or connections of thadires and maintain a
consistent tree shape. The third group is the most complexvith approximately
three times the number of nodes as the first group. Althoughres are quite
complex, they are still stable and the local structure arépreserved.

5.2.2 Inexact Graph Matching:

Matching with local structure variance: The data used here is the same as the
previous section. However, here we study Delaunay graplasidgition to the k-
nearest neighbour graph (with varying k).

In Figure 10, we show five examples from the sequence of 30svavhe house.
The top row shows the original image, the second row the Dehagraphs, the
third row the minimum spanning trees obtained from the Dedgigraph commute
times, the fourth row the 5 nearest neighbour graphs, ariftineow the minimum
spanning tree obtained from the k-nearest neighbour grapimute times. From
the figure it is clear that although the structure of the gsaydries, the spanning
trees are quite stable under these changes. This demesstinat the minimum
spanning tree delivered by the commute time can be used aspdesbut stable
graph representation. It is also interesting to note theakthearest neighbour graph
gives more stable trees than the Delaunay graph.

Next we aim to investigate whether the spanning trees cansed for the pur-
poses of graph-matching. We have matched the first imageisegfuence to each
of the subsequent images using the divide and conquer treshimg method out-
lined earlier in this paper. The results are compared witiselobtained using the
method of Luo and Hancock [7] and the partition matching rmdtbf Qiu and
Hancock [12]. Figure 11 shows us the correct correspondexteas a function of
the difference in view number. From the results, it is cléat bur new method out-
performs both Luo and Hancock’s EM method and, Qiu and Hadsgartition
matching method for large differences in viewing anglegsl$b demonstrates that
the k-nearest neighbour graph outperforms the Delaunghdredelivering stable
structure. There are clearly significant geometric digiog present in the images
including effects due to rotation and perspectivity, aresthgive rise to significant
structural differences in the resulting graphs. Even invtloest case, our method
based on the k-nearest neighbour graph has a correct condespce rate d0%.

Matching with Random Edge Corruption: We now focus on testing the stability

the spanning trees under controlled random noise. To devihidelete a controlled
fraction of edges from the initial graphs (either Delaunak-mearest neighbour).
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1th 3th 5th 7th 9th

Fig. 9. Three sequences of model hédses with their spanrgrgepresentation.



Fig. 10. House images, their graphs and extracted trees.

In Figure 12 we show the effect of this deletion process feigtaphs shown earlier.
The number at the top of each column is the percentage of etdeted. The first
and the third rows of the figure show the Delaunay graph an&-hearest neigh-
bour graph after edge deletion. The second and fourth roms gte corresponding
spanning trees. From the figure it is clear that the tree sireics stable under edge
corruption, and again the k-neatest graph outperforms #iauday graph.

We have matched the edge-corrupted trees to the origires, teed have computed
the fraction of correct correspondences. The results aversin Figure 13. The
fraction of correct correspondences decreases in a linshrdn with edge corrup-
tion. The different curves in the plot are for the Delaunagpdr and the k-nearest
neighbour graph. The k-nearest neighbour graph outpesfoine Delaunay graph
by a margin of about 10% at 50% edge corruption.
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Fig. 11. Comparison of results.

12%

Fig. 12. Random edge deletion.
5.3 Comparison of the two simplified graph representations

We now explore the relative merits of the two graph simplifma methods pre-
sented in this paper. Figure 14 shows the fraction of comadthes for the images

22



100 ¥

80

60

40

20 | b

Correct correspondence rate (%)

Delaunay graph spanning tree =

Il 1 Il 1 Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Edge Corruption (%)

Fig. 13. Graph corruption matching results.

in the CMU house data-set. The curves in the plot are taken figures 11 and
13. Additionally, as a pink line we show the result of using thulti-layer simpli-
fication method on the 5 nearest neighbour graphs. From theefigis clear that
the multi-layer simplification method delivers the besfpanance when used with
Delaunay graphs (blue line). For the Delaunay graph, théi+layler representation
is stable under graph variation and the composition of eagérlis not modified
significantly (see Figure 6 for an illustration). Howevehem this is applied to the
5-nearest neighbour graph, it does not perform well. Thearedor this is that the
k-nearest neighbour graph does not lend itself to a layevrdposition. Figurel5
illustrates the problems. In this example, note how the saxfethe inner green
layer are compressed together.

The spanning tree representation gives the best perfomvainen applied to the 5-
nearest neighbour graphs and the worst performance foreteubBay graphs. The
reason is that the tree representations for the 5-neariggthoair graphs are more
stable than those for the Delaunay graphs under variatiogsaph structure (for a
comparison see Figure 10).

Overall the stability of the spanning tree representatsohdtter than that for the
multi-layer representation. The reason for this is thatstingcture of layers can be
adversely affected by edge corruption. of the edges. An plais shown in Figure
16 with 12.6% of edges randomly pruned. In this example, the connectofithe
layer graph displayed in light blue is destroyed.
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Fig. 14. Comparison of the two methods on graph matching.
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Fig. 15. An example of multi-layer graph of a 5 nearest nedgitgraph.

6 Conclusion

In this paper we have described the how commute time can bpwechfrom the
Laplacian spectrum. This analysis relies on the discretes function of the
graph, and we have reviewed the properties of Green'’s famcliwo of the most
important of these are that the Green’s function is a kerndlthat the commute

24



450

400

350

300

250

200

150 -

100

Number of nodes:
50 30 1 1 1 1 1 1 1 J
100 150 200 250 300 350 400 450 500

Fig. 16. An example of a multi-layer graph with edge corropti

time is a metric.

We have shown how to use the commute time to develop two giagiication
algorithms. The first of these uses the commute time to ariaryxnode to extract
a multi-layer representation. The second simplificationhoé uses the commute
time to extract spanning trees from graphs. Experimentaiyshow that our tree
representation is not only stable, but also preserves muffistructural information
to be useful for the purposes of graph matching.
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